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ABSTRACT 

The stability of an incompressible two-fluid wheel flow to infinitesimal helical dis­
turbances is studied. The inner fluid is heavy and has infinite electrical conductivity, 
while the outer fluid is light and is nonconducting. An axial magnetic field is externally 
imposed on both fluids. This configuration may be viewed as a Rayleigh-Taylor problem 
in the frame of the rotating fluid and is dynamically unstable. Growth ra tes  increase 
with increasing axial wavelength and azimuthal mode numbers, but decrease with in­
creasing axial magnetic field. By increasing the magnetic field sufficiently, the system 
can be made stable to short  axial wavelength disturbances for any azimuthal mode. 
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STABILITY OF TWO-FLUID WHEEL FLOWS WITH AN IMPOSED 

UNIFORM AXIAL  MAGNETIC FIELD 

by C a r l  F. Monnin a n d  J o h n  J. R e i n m a n n  

Lewis Research Cen te r  

SUMMARY 

The stability of an incompressible two-fluid wheel flow to infinitesimal helical dis­
turbances is studied. The inner fluid is heavy and has infinite electrical conductivity, 
while the outer fluid is light and is nonconducting. An axial magnetic field is externally 
imposed on both fluids. This configuration may be viewed as a Rayleigh-Taylor prob­
lem in the frame of the rotating fluid and is dynamically unstable. Growth rates in­
crease with increasing axial wavelength and azimuthal mode numbers, but decrease 
with increasing axial magnetic field. By increasing the magnetic field sufficiently, the 
system can be made stable to short axial wavelength disturbances for any azimuthal 
mode. 

1 NTR0DUCTION 

Vortex containment of a heavy fissioning gas surrounded by a lighter coolant gas has 
been suggested for possible application to gaseous core nuclear rockets (refs. 1to 3). 
Another application of the vortex containment principle is found in the vortex magneto-
hydrodynamic (MHD) generator (ref. 4). The problem investigated in this report was  
originally conceived to study the stability characteristics of the two-fluid wheel-flow re­
actor concept of Evvard (ref. 3). In this concept, a core of heavy fissioning gas in 
solid-body rotation is surrounded by a lighter coolant gas also in solid-body rotation at 
the same angular frequency. Since the centrifugal force is directed radially outward 
from the heavy inner fluid towards the lighter outer fluid, this flow configuration is dy­
namically unstable. When viewed from the rotating reference frame, the situation is 
analogous to  the well-known Rayleigh-Taylor instability problem where a heavy fluid is 
supported against gravity by a lighter fluid. Reshotko and Monnin (ref. 5) investigated 
the nature of this two-fluid wheel-flow instability from hydrodynamic considerations only. 



They found the flow always unstable with growth rates that increase with increasing 
axial, as well as azimuthal, wave number. 

Because the gaseous core is highly ionized and therefore electrically conducting, 
Evvard suggested that an externally imposed axial magnetic field might be used to  sta­
bilize the flow. Obviously, any realistic evaluation of the stability problems involved in 
this complex flow system would have to be determined by experiment. But the proposed 
concept does suggest an idealized flow configuration whose stability can be investigated 
mathematically by a straightforward perturbation analysis. 

This idealized flow problem, treated in the present report, consists of two inviscid 
immiscible fluids of constant and uniform density separated by a cylindrical interface. 
The inner fluid is a perfect electrical conductor, while the outer fluid has the electrical 
properties of a vacuum. There is an externally imposed axial magnetic field which, at 
equilibrium, is uniform and has the same value in both fluids. This is a hydromagnetic 
flow in which the electromagnetic fields are coupled to the hydrodynamic flow fields. 
The hydromagnetic equations, with scalar pressure, were used to describe the flow. 

Although the correspondence between the real  flow problem and the idealized one is 
tenuous indeed, the idealized problem possesses the advantage that it can be readily 
solved and some of the results should be of use in the design of an experiment and in the 
interpretation of results. The idealized problem is also of interest in its own right 
since it has not been previously investigated. Furthermore, in hydromagnetic fluids 
such as a liquid metal, the sharp boundary and the infinite electrical conductivity would 
correspond to a realistic physical situation. 

Wilhelm (ref. 6) has investigated the stability of an idealized two-fluid wheel-flow 
configuration where the inner fluid was a perfect conductor and the outer fluid was a 
nonconducting gas. The equilibrium magnetic field was an azimuthal field produced by 
an axial sheet current at the interface between the inner and outer fluids. The basic 
equations used in the present report are identical to those of Wilhelm. 

In the idealized model, viscous effects were omitted, but as Chandrasekhar (ref. 7) 
notes for rotating flows, viscosity severely diminishes the growth rate of short-
wavelength disturbances. We should therefore expect the short-wavelength results of 
this report to be pessimistic in the predictions of stability. Finite resistivity effects 
have also been omitted in the analysis, but Kruskal and Schwarzschild (ref. 8) have 
found that for the kind of problem under consideration, namely large electrical conduc­
tivity, the infinite conductivity assumption preserves the essential features of the real 
situation. 

In this report, the hydromagnetic stability problem is solved by the normal-mode 
technique. We begin by writing the continuity, momentum, Ohm's law, and Maxwell 
equations for the inner and outer fluids. These equations are linearized by performing 
a perturbation analysis about an assumed equilibrium flow. Solutions to these equations 
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are obtained for the inner and outer fluids, and the interfacial boundary conditions are 
derived. Simultaneous solution of the volume and boundary equations yields the disper­
sion relation. The dispersion relation is solved for complex frequencies and real wave 
numbers. The results suggest some methods that might be employed to stabilize this 
type of flow. Dimensional analysis is applied to determine the degree to which the 
idealized model is approximated by the wheel-flow reactor plasma, and by the liquid 
metals sodium, potassium, and mercury. The relevance of the idealized model to situ­
ations where finite amplitude disturbances and finite electrical conductivity exist is dis­
cussed in a qualitative way. 

BASIC FLOW EQUATIONS 

Inner-FI uid  Equations 

The hydromagnetic equations, in MKS units, are used for the inner fluid: 

= J * X B * - V P *I -

E* + -V* X B* = 0- -

The asterisks indicate that the quantities are dimensional quantities. (All symbols are 
defined in appendix A. ) In these equations viscosity, electrical resistivity, space 
charge, and displacement current have all been set equal to zero. 

The electric field -E* and current density -J* can be eliminated from equations (1) 
and (6) by use of equations (3) and (4) to yield (ref. 6) 
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v - -v * = o  

V - B * = O-

* aB*-
VX(V XB*)=-

a t*- _  

Outer-Fluid Equations 

Since the outer fluid is an electrically nonconducting fluid, the electromagnetic 
equations are uncoupled from the hydrodynamic equations. Thus, for the outer fluid, 
the hydrodynamic equations are 

pr:-+ (V* . V)V*1= -VP*- -

The electromagnetic equations in the outer fluid are Maxwell's equations for a vacuum, 
with the displacement current neglected. Only the magnetic field equations are re­
quired, and these are 

V X B * = O 
-

* V - B  = O  (14)-

BOUNDARY CONDITIONS 

Next we describe the boundary conditions of the interface between the inner and 
outer fluids. In the real physical situation, there would be a continuous transition of 
fluid properties across a thin layer separating the two fluids. As is the usual case, we 
assume the transition is discontinuous, and then allow for a sheet current and a discon­
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tinuous jump in the field quantities. The appropriate equations may be integrated across 
the interface to obtain the following boundary conditions: 

where 6 is a unit vector normal to the interface. Equations (15) to (17) are to be evalu­
ated at the displaced interface. A detailed derivation and discussion of the boundary 
conditions is given in appendix B. 

It is also necessary to have a relation between the velocity field and the displace­
ment of the fluid at the interface. Since all the equations in this report are given in the 
Eulerian form rather than the Lagrangian form, we cannot, in general, express the 
various field quantities in terms of a displacement vector. However, when the displace­
ments are infinitesimal, the Lagrangian displacement can be related to the Eulerian ve­
locity. Following reference 9, let the skrface of the interface be defined by the function 
F(r*, 8, z*, t*) = 0. Since a particle lying in the surface must move tangential to the 
surface, it follows that (ref. 9) 

aF-+ (V* V ) F  = 0 
at* -

Let the interface be described by the function 

F(r*, e, z*, t*) = r *  - [ ( * (e ,  z*, t*) + a] (19) 

where ( * ( e ,  z*, t*) is the radial displacement from the equilibrium position r* = a. 
We now obtain a relation between the interface position and the velocity by substi­

tuting equation (19) into equation (18). This yields 

= o  
r* a e  
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Equation (20)will be used to determine the perturbation velocity in terms of the radial 
displacement of the interface. 

EQUl LI BRIUM FLOW 

The geometry of the two-fluid wheel flow is shown in figure 1. Cylindrical coordi­
nates are used, with the z-coordinate directed into the paper. The heavy inner fluid is 
given the subscript 1, and the outer fluid has the subscript 2. The interface between the 

Azimutha l  

Mean azimuthal  

Outer 
boundary 

Figure 1. - Geometry of two-fluid wheel flow. 

two fluids is at radius a. The outer boundary of the outer fluid is at radius R, which is 
taken to be infinite in the following analysis. Clearly, the equilibrium flow is unaffected 
by a cylindrical boundary at a finite radius R, as long as the boundary rotates with the 
angular velocity of the wheel flow. The reason for letting R be infinite is to simplify 
the dispersion relation obtained from the perturbation analysis. Since the disturbance is 
generated at the interface and decays rapidly away from the interface, the outer boundary 
has little influence on the disturbance growth rates. Reshotko and Monnin (ref. 5) ex­
amined the effect of the outermost boundary at r = R, and concluded that "For values of 
p1/p2 and R of interest in wheel flow reactors, the stability characteristics are es­
sentially those of the unbounded configuration. 

The inner and outer fluids move in solid-body rotation at the same angular fre­
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quency a. Thus, the equilibrium flow velocity is azimuthal and depends only on the ra­
dial coordinate according to the relation 

In equilibrium there are no zero-order electric currents; the externally imposed mag­
netic field is axial and uniform throughout space. Thus, in equilibrium the flow is 
purely hydrodynamic since the magnetic terms drop out of equation (7). It was shown in 
reference 5 that Vz , given by equation (21), satisfies the pertinent hydrodynamic mo­
mentum and continuity equations (eqs. (7)and (8)). The equilibrium pressure distribu­
tion, in the inner and outer fluids, consistent with boundary condition (18), was found to 
be 

* Po, 1 = Pc * + p1 a2r*2 O z s r * s a  
2 

Po*, = P; + p1 ­a2a2+ p2a2(r*2 a2) a zs r* s R 
2 

FORMULATION OF STABILITY PROBLEM 

Inner-Fluid Disturbance Equations 

The equations governing the infinitesimal disturbances in the inner fluid a re  obtained 
from a linearization of equations (7), (8), and (10) about the assumed equilibrium flow. 
Let -B* = ;Bo* + -b*, I*= 6r*a+ E*,and P = Po*+ p*. Then the linearized perturbation-
equations a re  

Momentum (eq. (7)): 
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Faraday's law for a perfect conductor (eq. (10)): 

ab,. ab; a V;-- + S 2 - -
a e  Bo* az*at* 

ab., a V;-+S2-- ab., - Bo*­
a t  * a e  az* 

ab,. ab; -- + S 2 - ­
at* a e  

Continuity (eq. (8)): 

av: V; a$ av;
- + - + - - + - = o  
ar* r* r* a e  az* 

Equations (23) to (29) can be nondimensionalized by using the following definitions: 

2 
v* = vvref t* = tS2- 1 p * = p -Bref 

B* = BBref o* = US2 vref = a0 

2 
2r* = ar A =  Bref z* = az 
(Y 

where subscript (Y = 1 refers to the inner fluid, and (Y = 2 refers to the outer fluid. 
The nondimensional form of equations (23) to (29) becomes 
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a'r 2av,+--2v e -- A B  
a t  a e  ioK­

abr abr - B O G-+-- a'r 
a t  a e  

abe abe ave-+- -
a e  - Bo=a t  

abz a vZ-+ - - ab, - B o y
at  a e  

5 'r avZ+ - + - - 1 ave  + - = o  
ar r r a e  az 

Since the coefficients of equations (23a) to (29a) are independent of t, 8, and z, the 
equations allow solutions of the form q(r)exp[i(me + kz + wt)] where q(r) is a complex 
disturbance amplitude, k and m are the nondimensional axial and azimuthal wave num­
bers, respectively, and w is a nondimensional complex frequency. The wave numbers 
k and m a r e  real, and m is integral. The real  part of w is the nondimensional ro­
tational frequency of the disturbance, while the imaginary part wi is the nondimen­
sional growth rate of the disturbance. Disturbances grow, a r e  neutral, or decay ac­
cording to whether wi is negative, zero, or  positive, respectively. For the assumed 
form of the disturbance, equations (23a) to (29a) become 

icv, - 2ve = AIBOikbr - A 2  @ + B o ­
2 '(dr :) 

icve + 2vr = AIBOikbe A? im (p + Bobz)2 
r 
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icv, = -A,ikp (25b)2 

icb, = Boikvr 

icb, = BOikvg 

icb
2 

= B0ikv2 

dv, imve 

-+ -+- vr + ikv, = 0 (29b)

dr r r 


where c = w + m, and c is the wave frequency observed in the rotating frame. It is 
subsequently referred to as the relative frequency. Substitute equations (25b), (26b), 
and (28b) into equation (23b) and equation (27b) into equation (24b), and let 

2 2  2
Q1 -- i c t - Alk,2 Bo) 

Then 

= ---Q1vr - 2~ e 
A:Q1 dp (32)

ic dr 

(33) 

Solve equations (32) and (33) for vr and ve in terms of p to obtain 

2 
ve=-(--A1 2 d p - g  P) 

+c Q1 dr 
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- + - - -  

where 

tjl2 = 1 + - 4 

Q: 

Substitute equations (25b), (34), and (35) into equation (29b) to obtain 

- + k  261d2p 1 dp k: 2)p = O  (37)
dr2 r dr  

The general solution of equation (37) is a linear combination of Bessel functions of 
the first and second kinds. The form used here is 

P = dlJm(ikGlr) + d2Hm(ikG1r) (38) 

The second te rm blows up at the origin, s o  d2is set  equal to  zero. The solution in 
the inner fluid is 

The boxed equations will be used in the interface boundary condition equations to obtain 
the dispersion relation. We obtain vlr by substituting p1 for p into equation (35). 

I 

I 

The magnetic field component blr is obtained by substituting equation (40) into equa­
tion (26b). 

I I 

blr = -dl 
r 

I I 

Finally, blz is obtained by combining equations (25b), (28b), and (39). 
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Bok2 
blz = -"";-A! Jm(ik6r)

2
C 

I I 

Outer-Fluid Disturbance Equations 

Linearization of equations (11)to (14)about the equilibrium flow yields the disturb­
ance equations for the outer fluid. 

Momentum (eq. (11)): 

Continuity (eq. (12)): 

Div -B = 0 (eq. (13)): 

Curl -B = 0 (eq. (14)): 
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a V;-+a--a v; 2 a v * - 1 ap*
at* a e  e - - p s  

av; av; 
-+ a-+ 2av; = 1 ap*-
at* a e  pr* a e  

av; V; av; av; 
-+ - + - - + - = o  
ar* r* r* a e  az* 

ab: b: ab., ab; 
-+ - + - -

r* a e  
+ - = o  (47)

ar* r* az* 



- - - -  ab; ab; 
- 0  

ar* az* 

ar* r *  r* a e  

The nondimensional forms of equations (43) to (50) are 

a'r +-- aP- a'r 2~ = - A  2 -
at ae  e ar 

2 
av, +-ave + 2 v r = - - ­- *2 ap 
a t  a e  r a e  

a t  a e  az 

avr vr ave avz 
-+ - + - - + - = o  
ar r r a e  az 

abr br abe abz 
-+ - + - - + - = o  
ar r r a e  az 

1 a b e ­
r a e  az 

(49) 

(50) 


(514 

As before, the equations allow solutions of the form q(r)exp[i(mO + kz + ut)]. 
Equations (51a), (52a), and (53a) become, respectively, 
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Q2vr - 2~ = - A2 ­dP e d r  

2 impQ ~ V O+ 2vr = -A2 -r 

2Q2vz = -A2ikp 

where Q2 = ic. And equation (54a) becomes 

dvr-+-+-v‘r im e + i k vZ = O  
dr  r r 

Solve equations (51b) and (52b) for vr and ve in te rms  of p to obtain 

2where G22 
= 1+ 4/Q2. 

Substitute ve from equation (59), vr f rom equation (60), and vz from equation 
(53b) into equation (54b) to  obtain the differential equation for the perturbation pressure 
in the outer fluid 

This differential equation is of the same form as equation (37). The solutions to equa­

tion (62) a r e  therefore 
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- -  

where Hm is the Hankel function of the first kind. It is usually denoted by Hm(1), but 

the superscript was removed to  simplify notation in this report. As r - 03, the first 
te rm in equation (63) blows up, so d .  is set equal to  zero. The solution for the per­
turbation pressure te rm in the outer fluid is therefore 

I I 

The perturbation velocity te rm vr is obtained by substituting p2 for p in equa­
tion (60), then 

We obtain br and b, from equations (55a), (56a), and (57a) which become, re­
spectively, after assuming all first-order quantities vary as q(r)exp[i(me + kz + ut)] 

dbr-+-+-bbr im 
e + i k b z = O  

dr  r r 

im -bZ - ikbg = 0 (56b) 
r 

dbz ikb, = 0 (57b)
dr  

Substituting be from equation (56b) and br from equation (57b) into equation (55b) 
yields the differential equation for bZ in the outer region 

d2b, 
+ - -- ($+db, k?b, = 0 

&2 r d r  

Again, the general solution is a linear combination of Bessel functions of the first and 
second kinds 
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bz = SIJm(ikr)+ S2Hm(ikr) 

As r - ~0 the perturbation field must remain finite, s o  Sl is set equal to zero. 
Then 

I bzz = S2Hm(ikr) I 
Substituting bZ from equation (68) into equation (57b) yields 

b2r = S2 d [Hm(ikr)l
ik dr  

Application of Boundary Condi t ions at Interface 

The boundary conditions requiring all perturbation fields to be finite at r = 0 and 
r = 03 have already been applied. The remaining conditions, applicable at the interface, 
are given by equations (15) to (17). The surface normal can be written as 

The zero-order surface normal is the unit vector in the radial direction r^. The 
quantity -m is a first-order perturbation of the unit vector. The first-order boundary 
conditions on the normal components of velocity and magnetic field at the interface a r e  
obtained from equations (16) and (17) as 

r^ - (I2- vl) = V2r - Vlr = 0 at r = l  

at r = l  

Strictly speaking, these two boundary conditions should be evaluated at the displaced in­
terface. But, to within first order, equations (16) and (17) may be evaluated at the 
equilibrium interface position, r* = a or equivalently r = 1. 

Substituting equations (35), (39), and (65) into equation (70) gives the condition of 
continuity of radial velocity at r = 1, 
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A::-b;J&(ik61) + 2imQl Jm(ikgl)l dl = &FiHL(ik6,) + 2imQ2Hm(ikF2)ld2 (72) 

Q;F; Q2 62 

where prime denotes differentiation with respect to r. 
When equations (26b), (35), (39), and (69) are substituted in equation (71), the condi­

tion for continuity of radial magnetic field at r = 1 becomes 

ikBO dl[Q;J;(ik6,) + 2imQlJm(ike1)l = -H&(ik) 
(73)

g2 
c2QT6; ik 

The boundary condition in equation (15) states that the normal force is continuous 
across the displaced interface. Writing out equation (15) to all orders results in the fol­
lowing equation, in physical variables: 

where all quantities in equation (74) a re  evaluated at r* = a + [*. Now 

) = BG2 + 2B;bL + b,*2 

We may now wri te  out all terms in equation (74), which yields 

The radial displacement [ *  is obtained from equation (20)where 

v* = v* r r 
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V; 	 = r*a + v6* 

v* = v z* 
z 

Subst tuting these into equation (20) and treating t *  a s  first order y J d s  to first order 

= o  

Assuming that t *  goes as exp[i(mB + w*t* + k*z*)], we get from the last equation 

-iw*t*(a) + v,*(a) - imn(* = o 

And, after rearranging, 

or 

Thus, in dimensionless form the displacement is 

Retaining only first-order te rms  in equation (75) leaves 

Nondimensionalizing equation (77) gives 
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I 

2 2It2follows from the definition of A2
CY 

that A1 = (p2/p1) A2. If we choose Vref SO that 
A1 = 1, equation (78) becomes 

(79) 

Substituting into equation (79) the quantities t(1) from equation (76), pl(l)  from 
equation (39), blz(l) from equation (42), p2(1) from equation (64), and baz(l) from equa­
tion (68) results in the continuity of normal force boundary condition 

D I  S PERSION RELATION 

From equation (72) for continuity of radial velocity, 

d.= 

t 
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where 

Sm= Q2H&(ikQ + 2imQ2Hm(ikB2)2 

#m = Ql2J&(ikS1) + 2imQ1Jm(ikB1) 

From equation (73)for continuity of radial magnetic field, 

Substitute equations (81) and (84) into equation (80) to obtain 

= Hm(ikB2) + --1 
*m (85) 

c2Qi6f 

Using the definitions of Q,, #,, and Smand rearranging terms give 

1 

where, after setting A1 = 1, 
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Q2 = ic 

6	2 -- 1 - - 4 
2 - 2C 

I /  ­
62 ­

1 ­- 1 - -..[
4 

2-Y
C 

c =_ w +  m 

Prime denotes differentiation with respect to r .  Thus, 

I- 1 

and 

H&(ik) = [; Hm(ikr)l 
r=l 

(89) 

(90) 

(92) 

(9 3) 

(94) 
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Equation (86), with the definitions following it, is the dispersion relation. It is a com­
plex equation since w, and therefore c, is complex. In fact, the Bessel functions have 
complex arguments because of the 6, factors. The dispersion relation was solved nu­
merically by using an iterative technique on an IBM 7094 computer. 

The dispersion relation has multiple roots of which some are nongrowing Alfven 
waves. A technique was incorporated into the program to eliminate these uninteresting 
solutions. 

APPROXIMATE SOLUTIONS TO DISPERSION RELATION 

Long Wavelength Limit 

The long wavelength solutions k - 0 to the dispersion relation have been deter­
mined in appendix C. The results are 

Re(c) = -1 (95)w 

or  

w 
and 

h ( c )  = -G m > O  (97) 

where 

Re(w) = -m + -1 m > O  

These solutions were used as initial points in the iterative computer solutions. 
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Solutions Where Wave Frequency c = 0 

The values of k and Bo for which c goes to zero are determined in appendix D. 
Having selected a value of Bo or k, the following relation gives the value of k or Bo 
for which c = 0: 

Equation (99) is further reduced to the limiting cases of k - 0 and k - 00 in appen­
dix D. Equation (99) was used as a check of the computer solutions. 

DISCUSSI ON 

Although many stable modes of oscillation were found for the dispersion relation, 
only those solutions which indicate disturbances that grow with time are discussed. 
After the discussion of solutions to the dispersion equation, we explore some of the 
limitations of the normal mode approach to the stability problem and suggest some ways 
to interpret the results. Next, some physical implications about the magnetically sta­
bilized plasma are considered. Potential methods are suggested to avoid the instabil­
ities predicted by the present analysis. 

.Presented in figures 2 and 3 are curves of the imaginary and real parts, respec­
tively, of the relative wave frequency c as a function of the axial wave number k. In 
these plots, the azimuthal wave number is a parameter, and results are presented for 
four different values of the externally imposed magnetic field. These curves are solu­
tions to equation (86), the dispersion relation. 

Typical fluid properties for the wheel-flow reactor (ref. 10) were used to establish 
the range of dimensionless magnetic fields found in figures 2 and 3. An angular velocity 
of 200 radians per second was selected to provide a plasma Mach number of less than 
0 .1  at the interface. A density ratio p1/p2 of about 100, the largest envisioned, was 
chosen for the calculations because it is the most unstable configuration. The tempera­
ture chosen was 40 000 K, and the pressure was of the order of 100 atmospheres. The 
reactor radius was 1 meter, and the density p1 was 10.3 kilograms per cubic meter. 

As shown in figure 2 in all but the weakest magnetic field case, the growth rate ci 
decreases to zero at a finite value of the axial wave number for a given value of m. 
For a given m and a given magnetic field, both the real (fig. 3) and imaginary (fig. 2) 
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(a) Dimensionless magnetic field, 0. 154. 

Ib) Dimensionless magnetic field, 0.308. 

0 1 
Axial wave number, k 

(cl Dimensionless magnetic field, 0.462. (d) Dimensionless mag­
netic field, 1.54. 

Figure 2. - Disturbance growth rate as function of axial wave number with azimuthal wave number as parameter. 
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(a) Dimensionless magnetic field, 0.154. 

0 1 2 3 4 5 6 7 
(b) Dimensionless magnetic field, 0.308. 

0 1 
Axial wave number, k 

(c) Dimensionless magnetic field, 0.462. (d) Dimensionless mag­
netic field, 1.54. 

Figure 3. - Disturbance relative wave frequency as funct ion of axial wave number w i th  azimuthal wave number as 
parameter. 

parts of c must go to zero at the same value of k. Because of the scales used in the 
figures, it appears on some plots that ci and cre go to zero at different values of k, 
but the computer results verify that both the real and imaginary parts go to zero at the 
same value of k. The value of k at which c goes to zero is referred to as the criti­
cal wave number kcritical. Beyond kCritical, there are no solutions that correspond 
to a continuation of the curves presented in figures 2 and 3. 

In the hydrodynamic case (ref. 5), the flow was found to  be always unstable. How­
ever, figure 2 reveals that the effect of the magnetic field is to make the system stable 
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to short wavelength disturbances, X < 27r/kcritical. The short wavelengths are stabi­
lized because the magnetic field lines, which are ''frozenT7 into the fluid, undergo a dis­
tortion or "stretchingTTwhen the interface is perturbed. It requires energy to stretch 
the field lines. Thus, the energy that would normally be available to  drive the instabil­
ity is absorbed in the stretching process. In the hydrodynamic Rayleigh-Taylor prob­
lem, surface tension provides the "stretching' mechanism that stabilizes the short-
wavelength disturbances. 

Figure 2 also reveals that for a given value of k, the growth rate increases as the 
azimuthal wave number increases. This suggests that smaller chunks of the heavy fluid 
have the most likelihood of tearing off at the interface. In figure 2, the m = 1 curves 
have a dip in them near k = 0. Although it is not obvious from the figure, the growth 
rate is finite at the minimum of the dip. This same peculiar dip occurred in refer­
ence 5, and we have no good physical explanation for its occurrence. 

We note from figure 2 that the k = 0 disturbances (infinitely long wavelength) are 
unstable for all azimuthal wave numbers except m = 0. (When m = 0 and k = 0, there 
is no disturbance on the flow. ) These unstable modes are the pure flute modes. They 
do not distort the magnetic field and, hence, are not stabilized by it. When k = 0, the 
dispersion relation reduces to the simple form given in equations (95) to (98). From 
equation (95) and from figure 3, note that cre reduces to 1/9, when k = 0. Thus, to 
an observer moving with the rotating frame, all flute modes oscillate with the same 
frequency. 

In figure 4, the value of magnetic field for which c goes to zero is presented as a 
function of kCritical, with m as a parameter. These are plots of equation (99) in 
which the dispersion equation was solved subject to the requirement c = 0. These 
curves have a simple interpretation: for those combinations of magnetic field and axial 
wave number that lie above the curve, the plasma is stable, while it is unstable if the 
combination falls below the curve. Information found from figures 2 to 4 and equa­
tion (C9) indicates that no matter what value of magnetic field is chosen, a sufficiently 
high value of m will make the system unstable to long-wavelength disturbances. But 
when the value of m becomes so large that the azimuthal wavelength is comparable 
with the boundary layer thickness, the analysis breaks down. The analysis implies that 
even the idealized concept of a two-fluid wheel-flow device is impractical unless some 
way is found to place restrictions on the axial wavelength and azimuthal wave numbers. 

The dispersion relation was obtained from the linearized perturbation analysis about 
an assumed equilibrium flow. This suggests several interesting limitations to the anal­
ysis. We shall address ourselves to three of these problem areas. 

First, it was assumed in the theoretical analysis that a particular equilibrium flow 
could be established. Experimentally this may not be possible. However, the stability 
analysis gives us  some insight about the assumed equilibrium flow. If in establishing 
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2 5 6 7 8 9 10 
\xial wave number, k 

Figure 4. - Neutra l  stability curves for various az imuthal  wave numbers. (Flow i s  stable above curve and unstable 
below. ) 

the equilibrium state the flow must pass through some of the perturbations that are pre­
dicted to be unstable, we can be certain of great difficulties, if not the impossibility, in 
reaching the equilibrium situation. However, the analysis suggests that if the disturb­
ances could be restricted to short axial wavelengths, the equilibrium flow might be es­
tablished. This might be accomplished by keeping the axial length of the machine short. 

The second limitation is concerned with the assumption of small amplitude disturb­
ances and the attendant linearized analysis. Unstable solutions of the linearized prob­
lem represent only the first stage of growth, or of departure, of the system from the 
equilibrium state. As the disturbance amplitude becomes large, the flow should be de­
scribed by nonlinear differential equations. It is possible for nonlinear effects to limit 
the disturbance amplitudes and produce nongrowing, finite amplitude disturbances. We 
do not expect this in the present case. The state of minimum potential energy for the 
wheel-flow problem corresponds to the heavier fluid being at the outside with the lighter 
fluid at the center. The nonlinear effects may control the growth rate of the instabili­
ties, but should not terminate the growth. Even in the case of the short-wavelength 
disturbances, the predicted stability applies only to small amplitudes. For large am­
plitude disturbances at these wavelengths, the nonlinear effects could produce a positive 
growth rate. 
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The linearized perturbation analysis is useful in two respects. First, of course, it 
warns of regions where the system is unstable even to the infinitesimal perturbations. 
Second, it suggests which system parameters might be manipulated to maintain or im­
prove the stability in regions where the infinitesimal perturbations do not grow. The 
linear analysis shows that improved stabilization is obtained by increasing the magnetic 
field and restricting the disturbances to short wavelengths. Stabilization against large 
amplitude disturbances might be expected to improve with use of even larger magnetic 
fields and shorter wavelengths. The utility of this interpretation was demonstrated in 
reference 11, where the stability of a liquid-mercury - air interface was experimentally 
investigated. In these tests, mercury in glass tubes was subjected to vibrations of var­
ious frequencies and amplitudes, and the limits of interfacial stability were noted. A s  
the amplitude and frequency of vibration were increased, a smaller tube diameter was 
needed to stabilize the interface. This was consistent with the Rayleigh-Taylor theory, 
with surface tension effects included, which predicts that the interface is stable against 
short-wavelength disturbances . 

Finally, we want to  know how the results of this report would be altered by the in­
clusion of finite electrical conductivity. Kruskal and Schwarzschild (ref. 8) obtained an 
approximate solution to a simple hydromagnetic problem with finite conductivity and 
small perturbations. They compared the results with the infinite conductivity case. 
They concluded that the essential features of the large but finite conductivity problem 
were fairly represented if one assumed infinite conductivity, while allowing for electric 
sheet currents and electric sheet charges at the plasma surface. 

Intuitively, it seems that the result of finite, but large, conductivity would be some­
what larger growth rates and less stability at the shorter wavelengths than predicted by 
the infinite conductivity case. The effect of finite conductivity is to allow the fluid to 
slip through the magnetic field, without a proportional distortion of the field. The 
energy stored in the distorted field is less than it would be for infinite conductivity. 
Finite conductivity is accompanied by a dissipative effect because a fraction of the field 
energy created by the magnetic field distortions is converted into joule heat. By con­
trast, the energy-storage capacity of surface tension is independent of the growth rate 
because it is not accompanied by any dissipation of energy. 

The importance of the finite conductivity can be deduced from dimensional analysis. 
When the fluid has finite conductivity, equation (10) is modified by the inclusion of 
another term, becoming 

aB* 

When this equation is nondimensionalized, we get 
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2 aB 

V B + V X ( V X B ) = ­-2 a t
S2a UPo 

This equation can be reduced to equation (10)if S2a2 upo >> 1. The dimensionless 
quantity S2a2upo is the magnetic Reynolds number. When the magnetic Reynolds num­
ber is large, the field restrains the fluid as it does in the infinite conductivity case, 
where fluid stays "frozen" to the field lines. The criterion of large magnetic Reynolds 
number can be rewritten as a requirement on the electrical conductivity, namely 

1

U>>­

2
Po 

Choosing 8 = 200 radians per second, a = 1 meter, and po = 4 n ~ 1 O - ~henry per meter, 
wefindthat u > >  4000 mho per meter is the requirement for the infinite conductivity 
assumption to apply. 

For the proposed wheel-flow reactor, the plasma has a temperature of about 
40 000 K and a pressure of a few hundred atmospheres. To estimate the electrical con­
ductivity, we assume that the plasma is fully ionized and use the formula given by 
Spitzer (ref. 12, eq. (5-37))for electrical conductivity. In deriving the expression for 
conductivity, Spitzer neglected terms of the order l/ln A, where In A is the Coulomb 
logarithm. In the proposed wheel-flow reactor, In A is of the order of 2.5 to 5. Thus, 
the conductivity can be estimated to an accuracy of 20 to 40 percent at best. The pres­
ence of multiply ionized ions would increase the calculated conductivity by slightly less 
than a factor of 2,' while partial ionization would decrease the conductivity due to 
electron-neutral collisions and recombination. But the calculated conductivity should 
be valid to within an order of magnitude, which is sufficient for our purposes. 

Based on Spitzer's formula, the conductivity is between 2500 and 5000 mho per 
meter. Hence, finite conductivity effects will play an important role in the proposed 
wheel-flow reactor. The flow could, therefore, be substantially more unstable than 
predicted by the infinite conductivity analysis. 

In contrast to the wheel-flow reactor plasma, liquid metals have much higher con­
ductivities. Typical conductivities for the liquid metals sodium, potassium, and mer­
cury are respectively lo7, 7x106, and 106 mho per meter. These conductivities are 
well above 4000 mho per meter, so the infinite conductivity approximation should apply 
to two-fluid wheel-flow configurations, where the inner fluid is one of these liquid 
metals. 

A second criterion for the infinite conductivity analysis to apply involves the char­
acteristic time in which magnetic field perturbations are dissipated by joule heating. 
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When the conductivity is so  low that the diffusion te rm in equation (100) dominates over 
the flow term, we obtain the diffusion equation 

-1-V 2B*=-
aB* 

-
aE-to a t  

BY ' imension 1 arguments, the characteristic t ime for magnetic field inhomogeneities 
to  decay or smooth out is shown to be 

* 2T = a a y0 

For disturbances which occur in times short compared to T*, the fluid responds as 
though it had infinite conductivity. The growth times in this report, and in reference 5, 
are proportional to l/ciC2. For the infinite conductivity results of this report to apply, 
the growth times should be short compared to T*. Thus, the second criterion becomes 

r*aci = aa2 crpoci >> 1 

While the first criterion required only that the magnetic Reynolds number be large, 
the second criterion requires that the product of the magnetic Reynolds number and the 
growth rate must be large. From figure 2, the growth rates ci are of the order of 3 
or less for  m 5 5. In applying the second criterion, the growth rate ci shall be given 
the value 3.0. 

For the plasma and liquid-metal systems of interest, the following table gives 
typical values for  magnetic Reynolds number, magnetic decay time, and the ratio of 
magnetic decay time to growth time. 

Magnetic 
Reynolds 

Sodium 12.6 
Potassium 1680 8.4 

1.3 

.. 

Ratio of magnetic 
decay time to  
growth time, 

T*WCi 

1. 8 
7 560 
5040 
7 80 
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For the wheel-flow reactor, both the magnetic Reynolds number and r*C2ci are of 
order 1, implying that the magnetic field will have very little influence and that the sta­
bility of such a system would be better represented by the hydrodynamic analysis of ref­
erence 5. 

For the liquid metals, the opposite conclusion applies. The magnetic effects 
clearly dominate. Magnetic stabilization of a free surface may have application to those 
space power conversion systems that employ a liquid metal as the working fluid in a 
Rankine power cycle. A stable liquid-vapor interface must be maintained in the con­
denser to prevent vapor-locking of the condensate pump. Although there is a zero-
gravity environment, there are local mechanical disturbances that tend to destabilize 
the interface. The results of this report, and those found in reference 13, indicate that 
strong magnetic fields and short wavelengths will provide a stabilizing influence. The 
disturbances can be restricted to short  wavelengths by making the boundaries small. Tf 
the confining walls are made of metal, induced voltages in the fluid will be short-
circuited. And like a short-circuited homopolar generator, the movement of the fluid 
would be severely restricted. 

SUMMARY OF RESULTS 

The stability of an incompressible two-fluid wheel flow to infinitesimal helical dis­
turbances has been considered. The inner fluid is heavy and has infinite electrical con­
ductivity, while the outer fluid is light and is nonconducting. Both fluids are inviscid. 
A constant and uniform axial magnetic field is impressed on both fluids. Important re­
sults are: 

1. The growth rates of both propagating and nonpropagating waves a re  diminished 
by increasing axial magnetic field. 

2. For specific values of axial and azimuthal wave number, a value of magnetic 
field can be found which reduces the growth rates to zero. 

3. Growth rates at a specific axial wave number increase for waves with increasing 
azimuthal wave number. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, April 23, 1969, 
129-02-08-02-22. 
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APPENDIX A 

SYMBOLS 

A area L 

d constant in solution of differ- m 
ential equation n 

a interface radius 

B magnetic field m 

I constant in solution of differ-
ential equation P 

b disturbance magnetic field P 

C wave frequency observed in Q 
rotating frame, o + m 

‘i 
growth rate q(r)  

D defined by eq. (87) R 

E electric field Re 

F defined by eq. (91) 9 

G defined by eq. (88) S 

Hankel function of first kind, 
argument x S 

defined by eq. (82) t 

modified Bessel function of first V 

kind, argument x V 

zm imaginary part of W { a, b} 

J current density r, 0, z 

Jm(x) Bessel function of first kind, x,y, z 
argument x 

6 
defined by eq. (83) 

modified Bessel function of sec- 5 
ond kind, argument x 

k axial wave number 
I-LO 
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length 

azimuthal wave number 

vector normal to interface 
surface 

first-order perturbation of unit 
vector normal to surface 

pressure 

disturbance pressure 

defined by eq. (89) or (92) 
depending on subscript 

complex disturbance amplitude 

outer radius 

real part of 

defined by eq. (98) 

ratio of Alfven speed to refer­
ence speed 

surface variable 

time 

velocity 

disturbance velocity 

Wronskian of a and b 

cylindrical coordinates 

Cartesian coordinates 

defined by eq. (90) or (93) de­
pending on subscript 

radial displacement of inter­
face from equilibrium 

permeability of free space 



P density 

ff electrical conductivity 

s1 angular wheel-flow velocity 

w complex angular disturbance 
velocity 

Subscripts: 

C equilibrium quantity at r* = 0 

critical value of k for which c goes 
to zero 

i imaginary 

re  rea1 

ref reference quantity 

a! dummy script  

0 equilibrium quantity 

1 inner fluid 

2 outer fluid 

vector-
Superscripts: 
? prime denoting differentiation with 

respect to r 

* 	 dimensional quantity .. 
unit vector 
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APPENDIX B 


DER VATION OF BOUNDARY CONDITIONS 

The boundary ondition quations (eqs. (15) to (17)) are found by integrating ppro­
priate differential equations across the interface. In the real physical situation, there 
is a rapid but continuous transition of fluid properties across a thin layer separating the 
two fluids. Therefore, the differential equations that we use must be general enough to 
describe the flow on either side of, and through, the transition region. Therefore, we 
assume that both fluids satisfy the following conditions: the conductivity is finite; vis­
cosity, space charge, and displacement current can be neglected; and the magnetic 
permeability is that of free space. Any idealized fluid properties that are different on 
opposite sides of the interface, such as infinite conductivity on one side and zero con­
ductivity on the other, must be introduced into the boundary conditions after the limits 
are taken. 

Following the approach used in reference 14, we form a volume element, fixed in 
space, which instantaneously includes the interface (fig. 5). The volume will be a right 
cylinder such that at time t the lower face of the cylinder coincides with the interface. 
As time increases to t + 6t, the interface moves up to the position shown in figure 5. 
The length of the cylinder A is considered to be very small. Thus, in the limit, the 
side walls make no contribution to those surface integrals with finite integrands. The 
surfaces at the top and bottom of the cylinder are small  enough in area A to allow a 

A 

Figure 5. -Vo lume element intersect ing t h e  i n t e r ­
face between regions 1 and 2. 
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surface integral to be approximated as the product of the integrand and the surface area. 
The use of a fixed volume in space precludes the difficulties associated with moving 

reference frames. When integrating across the interface, while in a frame moving with 
the interface, the field quantities in the differential equations would have to be trans­
formed into those fields that the moving observer would experience. The resulting 
boundary conditions for the moving frame then have to be rewritten in terms of the 
fields observed in the laboratory frame. 

Derivation of Equation (16) 

Equation (16) is obtained by integrating the conservation-of-mass equation over the 
volume element of figure 5. The integral form of the conservation of mass over a fixed 
volume is 

Af pdv +&V - (px)dv = 0 
a t  v 

Using Gauss' theorem to transform the second integral of equation (Bl) into a surface 
integral, we get 

The first integral in equation (B2) is approximated as 

2f p d v = -1 
(A  V fi6t)A - (p2)

ta t  v 6t 

Using a Taylor expansion, we get 

( 4 + 6 t  = (?>t,t + .  . . 
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Substitute for from equations (B5)and (B6),respectively, into 

equation (B4)to  obtain 

a t  f p d v = L {2 v 6t 

Now passing to the limit we obtain from equation (B8) 

lim 2f p dv = (pl - p 2 ) 1  - &I 
6t, A-0 a t  v 

The second integral in equation (B2) can be approximated as 

where @(A) is the contribution from the cylindrical surface. This term will vanish in 
the limit A - 0 because the integrand is finite over the cylindrical surface. Thus, the 
limit of equation (B10)becomes 

Substituting equations (B9)and (B11)into equation (B2) gives 

(PI - P2)V * + P2V2 - l-i- PlVl - = 0 
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And on rearrangement, we have 

Equation (B12)is satisfied if 

I v 

Equation (16)is the kinematic condition that the fluid velocity component normal to 
the boundary must equal the velocity of the boundary normal to itself. This applies to 
our situation, where the two fluids are immiscible. In this case no mass flows across 
the surface, and the fluids on opposite sides of the surface remain in contact with the 
surf ace. 

When equation (B12) is satisfied but equation (16)is not, we have the boundary con­
dition for a shock or detonation front where fluid can cross the interface. 

Derivation of Equation (17) 

Equation (17)is obtained by integrating the V -B = 0 equation (eqs. (9) and (14)) 
over the volume element of figure 5. 

Using Gauss' theorem to convert to a surface integral, equation (B13)becomes 

The surface integral can be approximated by 

And passing to the limit gives 
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lim $E - 6 ds  = 6 (E2- B1)A = 0 
Ad0 s 

or 

I *n . (E2- El) = 0 

Derivation of Equation (15) 

Equation (7) is applicable to both sides of the interface, subject to the conditions 
noted at the beginning of this appendix. Hence, we integrate equation (7) over the volume 
element of figure 5. 

By making use of the continuity equation and the identities given below, we can replace 
the volume integral on the left side of equation (B17) by one that is more convenient to 
evaluate. Accordingly, we wri te  the differential form of the continuity equation as  

We also have the identity 

I�we substitute ap/at from equation (B18) into equation (B19), we get 

Using equation (B20), the integrand of the volume integral on the left side of equa­
tion (B17) becomes 
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or  

- .-
p -+ p(X V)V-= 2 (pv) + v * (pVV)

a t  a t  -

Substituting equation (B22) into equation (B17) gives 

By application of the various forms of Gauss' theorem, the last three integrals in equa­
tion (B23) can be converted into surface integrals. Thus, 

/V(. + -$-)dv = 6(.+ E)fids 

V 

Substituting equations (B24) to (B26) into equation (B23) gives 

Each integral in equation (B27) shall be separately evaluated for the volume element of 
figure 5. 

The first integral in equation (B27) is evaluated in the same manner as for the first 
integral in equation (B2). Thus, we can write the result by replacing p in equation (B9) 
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by pV and we get-7 

l im 2f p_V dv = (plvl - p2v2)v  &I 
cit, A-o a t  v 

The second integral in equation (B27) is approximated as 

Passing to the limit gives 

We may use equation (16) to reduce equation (B30) to 

The third integral in equation (B27) is approximated as 

BB 6 ds = BIBl (-;)A + - -B2B2 iiA +@(A) 

Passing to the limit gives 

lim f BB fi ds = (B,B, 6 - B B ;)A-1-1A-0 s 

By using equation (17), we can simplify equation (B33) to 

lim BB 6 ds = (E2- B1)B &I 
A-0 s 
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Finally, the fourth integral in equation (B27) is approximated as 

Passing to the limit gives 

A 

Now substitute equations (B28), (B31), (B34), and (B37) into equation (B27) to obtain 

The two terms on the left side of equation (B38) cancel each other, while the two terms 
on the right side are orthogonal to each other. The orthogonality condition follows from 
the fact that the vector B2- g1 lies in the surface of the interface. This is easily seen 
by noting that the magnetic field vectors and B2 may be resolved into components 
normal and tangential to the interface, En and Et respectively. Thus, 

But from equation (l?), the equation of continuity of the normal component of magnetic 
field at the interface, we have that 

Thus, 

- 1 - 4 2  - BB - B  - B  4 1  (B41) 

Therefore, each of the two terms on the right side of equation (B38) must independently 
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be zero. This results in the following two boundary conditions: 

II 

(E2- - -B1)(B * 6) = 0 

I 

Equation (B42) is not used in the text because it does not yield any zero-order o r  first-
order information for the problem treated in this report. However, equation (B42) can 
be interpreted in general. It is interesting to note that if E2 - # 0 (i.e., when there 
are surface currents, which in turn means that one of the fluids is a perfect conductor) 
equation (B42) requires that 

We infer from equation (B43) that the field on both sides of the interface is wholly 
tangential to the interface. This follows physically from the infinite conductivity as­
sumption which causes the field lines and the fluid to be "frozen" together. We know 
from equation (18) that a particle, once on the surface, always remains on the surface. 
Since the magnetic field lines and particles are always "frozen" together, we should 
expect that the magnetic field lines, o m e  on the surface, will remain always on the sur­
face. 

If %2 # 31,equation (B42) yields first-order information about the boundary con­
ditions. To demonstrate this we wri te  out the zero- and first-order terms in equa­
tion (B42). 
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The zero-order te rms  of this equation are 

The first-order terms are 

If %2+l&19 %a! 
r^ = 0 from equation (B47), and equation (B48) reduces to 

and since %2 #%1, equation (B49) requires that 

Equation (B50) is the first-order boundary condition that results when # E&l. In 
the problem considered in this report, EO2= and thus equation (B50) does not 

apply. Furthermore, in this report  9-Ja * r^ = 0; hence, equation (B48) yields no first-
order information. 

Ot her Boundar y Condition s 

In reference 6, Wilhelm presents a boundary condition (eq. 1 . 7  of ref. 6) that was 
derived by integrating equation (10) of this report across the interface. Now equa­
tion (10) was obtained by substituting equation (3), which holds only for infinite conduc­
tivity, into equation (6). Since equation (10) does not hold on both sides of the interface, 
it cannot be used to obtain boundary conditions. Fortunately, equation 4.6 of reference 6 
can be obtained from equation (B38), s o  Wilhelm's results are valid. 

In summary, the following table shows the differential equations and the corre­
sponding boundary conditions obtained by integrating the equations across the interface. 
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Differential equation Boundary condition 

- _.­

?@+v .  ( p X )  = 0 ii - (E2- V1)= 0 
a t  

V - B = O  



APPENDIX C 

LIMITING SOLUTION OF DISPERSION RELATION FOR 

SMALL AXIAL WAVE NUMBER 

The dispersion relation equation (42) is to be solved in the limit of small axial wave 
number k. The Bessel functions become 

For k - 0  

2 2ti1'6 2 -- 1 - - -4 
2

C 

Q1 - Q2 = ic 

The dispersion relation can be rewritten 

(c2 - 4)(wc2 - 2c + m) = o 
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p1 

_ -  

I 

where 

- +  1 

p1 1 

The solutions to the dispersion relation are 

c = *2  

2 2For the solutions given in equation (C8),a1 = ti2 2 0. These solutions are rejected 
because the condition that the real part of k62 is greater than zero does not hold. 

The solutions in equation (C9)are both valid solutions. The solution with the nega­
tive imaginary root grows while the solution with the positive imaginary root decays. 
Although both are possible, the growth solution is of more interest here since it persists. 

46 




APPENDIX D 

DETERMINATION OF THE POINT WHERE WAVE FREQUENCY c = 0 

Let c = 0. The dispersion relation (eq. (86)) becomes 

(D1) 
p1 

Differentiating the Bessel functions and rewriting them as modified Bessel functions 
gives 

p2 2 21 - - _  - k Bo 
p1 

From the Wronskian of the modified Bessel functions 

Thus, the numerator of the factor containing Bessel functions equals 1. Rearranging 
te rms  gives 

Solving equation (D5) for B, yields the value of k at which c = 0. For several limit­
ing cases, the equation can be further simplified. For all m as k - w, equation (D5) 
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reduces to 

P2 2k
1 - ­

p1 

For m = 0, k - 0, equation (D5)becomes 

For m = 1, k - 0, equation (D5)becomes 

2
Bo - 1 ' I n k  

.I - -p2 2k2 

For m > 1, k -c 0, equation (D5)becomes 

1 - ­
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